

Faculty of: Sciences and Life Sciences Course: Bachelor of Science (Chemistry) Semester: II Subject Code: CHM203-1C Subject Name: Inorganic and Physical Chemistry II

	Teaching hours/ Week					Evaluation Scheme/ Semester											
Sr Categor Subjec Subjec					Credi	Credi		Theory			Т	Tutorial / Practical					
No	v	t Code	Subject Name	T h	TuPr t		t Points			End Semester Exams		Internal Assessment		End Semester Exams		Total	
									Ma	Marks	Mar	Duratio	Mark	Duratio	Mark	Duratio	
									rks		ks	n	s	n	s	n	
1	MAJOR	CHM2 03-1C	Inorganic and Physical Chemistry II	3	-	2	5	4	10 10 05	Assignment Quiz Attendance	50	2	25	1	-	-	100

AIM

- Aware students of the about hydrogen and its chemistry
- Acquaint the basic concept of s-block elements
- Basic concepts related to acid, base, and buffers
- Learn concepts of volumetric analysis and their calculations.

COURSE CONTENTS

Course Outline for Theory

UNIT	COURSE CONTENT	TEACHING HOURS
Ι	 Chemistry of s-block elements and Coordination Chemistry Hydrogen. and its Chemistry. Alkali and Alkaline Earth Metals: Li, Na, K, Be, Mg, Ca comparative study of elements, oxides, halides, hydroxides, and carbonates. Exceptional properties of Lithium and Beryllium Coordination Chemistry Definition of some terms, Classification of ligands, Chelate, chelating ligand and Chelation, Classification of chelates, Uses of Chelates, Coordination number and Stereochemistry of complexes, and Nomenclature of coordination compounds. 	15
п	 Electron-deficient compounds: Boranes Preparation and properties of boranes, diborane, uses of diborane, structure and bonding in diborane. Catalysis Introduction, Types of catalyst, Characteristics of catalysis, Theories, Acid-base catalyst, Autocatalysis, Catalytic Promotors and Poison, Negative and positive catalysts, Enzyme catalyst, Applications 	15
III	Acid, Base, and Buffers Concepts: Arrhenius, Lowry – Bronsted and Lewis acid-base Concept, Strength of	15

Acids and Bas	es, Basic properties of acids and bases	
of hydrolysis (of Henderson e Weak acid-we		
solution, Num	r solutions, buffer capacity, Mechanism of acidic and basic buffer erical – calculation of pH of buffer solutions, Derivation of equation c and basic buffer solution	
Solid State		
crystallograph angle by rotat	s, Symmetry of crystals, Bravais lattice, miller indices, X-ray 7, Bragg's equation, and its derivation, measurement of diffraction ng crystal method and powder method, classification of crystals on onds, liquid crystals, types of liquid crystals, application of liquid	

Course Outline for Practical

SR. NO	COURSE CONTENT					
	Demonstrative Practicals					
	• Determination of pH through pH Strips and pH meters of one acid, base, and neutral					
1	solution					
	• Preparation of buffers and their application					
	Chemical reaction with catalyst and without catalyst					
	Volumetric Analysis					
	1. Estimation of the amount of Cu^{2+} in the given $CuCl_2.2H_2O$ solution using 0.01M					
	EDTA solution.					
	2. Estimation of the amount of Ni^{2+} in the given $NiSO_4.7H_2O$ solution using 0.01					
2	M EDTA solution.					
	3. Estimation of the amount of Zn^{2+} in the given $ZnCl_2$ solution using 0.01 M EDTA					
	solution.					
	4. Estimation of total, temporary, and permanent hardness of water.					
	5. Determination of acetic acid in commercial vinegar using 0.1 M NaOH.					
	Qualitative Analysis of Inorganic Salts					
3	Inorganic salts containing two radicals					
5	Anion: SO ₃ ⁻² , S ⁻² , PO ₄ ⁻³ (Soluble and Insoluble)					
	Cation: Group I to VI positive ions					
	Total Hours = 30					

TEACHING METHODOLOGY

- Conventional method (classroom blackboard teaching)
- ICT Techniques
- Teaching through the classroom, laboratory work
- Variety of learning styles and tools (PowerPoint presentations, audio-visual resources, e-resources, seminars, workshops, models)
- Teaching through laboratory work

LEARNING OUTCOME

- Procure knowledge of trends in s-block elements
- Obtain significant knowledge about solid-state
- Acquire knowledge about different types of catalysts
- Develop skills in volumetric analysis
- Learn to analyze the positive and negative ions from unknown inorganic compounds

ARRANGEMENT OF LECTURE DURATION AND PRACTICAL SESSION AS PER DEFINED CREDIT NUMBERS

Units		Duration Hrs.)	Cre	ation of edits mbers)	Total Lecture Duration	Credit Calculation	
	Theory	Practical	Theory	Practical	Theory+ Practical	Theory+ Practical	
Unit – 1	15						
Unit – 2	15	30	3	1	45+30	4	
Unit – 3	15						
TOTAL	45	30	3	1	75	4	

EVALUATION

Theory Marks	Practical Marks	Total Marks
75	25	100

REFERENCE BOOKS

- 1 Basic Inorganic Chemistry
- 2 Principles of Inorganic Chemistry
- 3 Principles of Physical Chemistry
- 4 A Textbook of Physical Chemistry
- 5 Vogel's Qualitative Inorganic Analysis
- 6 Practical Chemistry

FA. Cotton and G. Wilkinson.

B.R. Puri, L.R. Sharma & K.C Kalia,

Puri, Sharma, Pathania.

B.K. Sharma.

G. Svehla, B. Sivasankar

Pandey, O. P., Bajpai, D. N., Giri, S.